Правила и свойства умножения

Правила и свойства умножения

Что такое умножение?

Умножение является арифметическим действием, в котором принимают участие два аргумента - множитель и сомножитель. В некоторых случаях первый аргумент принято называть множимым, а второй - множителем. Число, которое получается в результате умножения, называется произведением.

Впервые в истории умножение для натуральных чисел было определено, как многократное сложение. Чтобы умножить число а на число b, необходимо сложить b чисел a.

a × b= а + а + ...+ а (b раз)

Позже умножение разделилось на рациональное, целое, вещественное, комплексное и некоторые другие виды чисел, согласно систематическому обобщению.

Сегодня в математике умножение имеет конкретный смысл, различные свойства и определения для разных математических объектов, а не только для определения чисел.

Умножение чисел между собой — это конкретная коммутативная операция, другими словами — это определенный порядок записи множителей-чисел, который никак не влияет на сам результат умножения.

Например, при умножении цифр 5 и 3 запись может выглядеть, как 3 × 5, так и 5 × 3 (произносится, как трижды пять и пятью три). В том и другом случае результатом вычисления будет являться число 15.

Давайте проверим эти действия через сложение:

5 + 5 + 5 = 15
3 + 3 + 3 + 3 = 15

Умножение матриц, векторов, кватернионов, множеств и т. д (т. е, нечисловых математических, физических и абстрактных величин) не всегда может являться коммутативной операцией. И здесь, при умножении физических величин будет важную роль играть их размерность.

В задачу общей алгебры, в частности теории колец и групп, всегда входит изучение общих свойств операции.

Что такое произведение в математике?

Произведением называется результат умножения. Умножаемые числа называются множителями и сомножителями. А под умножением подразумевается краткая запись суммы одинаковых слагаемых.

Например:

Когда мы видим значение 5 × 3, то имеется в виду, что нужно 5 сложить между собой три раза, другими словами, это обычная краткая запись для 5 + 5 + 5.

Запись произведения

Умножение может обозначаться крестиком «×», точкой «·» и звездочкой «*»:

5 × 3
5 * 3
5 · 3

Все обозначения одинаковы по своей сути и говорят об одном и том же действии.

Но иногда знак умножения в виде точки могут намеренно пропускать, если умножение идёт не на число, а на буквенную переменную и постоянную.

Например, вместо 5 × x обычно пишут 5х.

Если в действии есть несколько сомножителей, то вместо них можно поставить многоточие. Допустим, произведение целых чисел от 1 до 100 будет выглядеть таким образом:

1 × 2 × 3 × 4 ×…× 97 × 98 × 99 × 100

Что такое множимое?

В математических действиях множимое является первым числом или величиной, которое умножается на множитель.

Что такое множитель?

Множителем называется то число, которое показывает сколько раз следует повторять слагаемым какое-то другое число (множимое), чтобы получилось произведение.

Свойства умножения

В умножении существуют разные свойства: переместительное, сочетательное и распределительное.

По переместительному свойству: от перестановки разных множителей произведение остается неизменным.

Например: 5 × 2 = 10 и 2 × 5 = 10.

Соответственно, 5 × 2 = 2 × 5.

По сочетательному свойству: два соседних множителя можно заменить произведением.

Например: (3 × 2) × 5 = 3 × (2 × 5).

По распределительному свойству при умножении суммы на число можно умножать на него в отдельности каждое слагаемое, и потом складывать полученные результаты.

Например: (5 + 10) × 6 = 5 × 6 + 10 × 6 = 90.

Другие свойства

Чтобы умножить сумму на какое-то число, сначала необходимо выполнить сложение, а потом полученный результат умножить на число.

Например: (4 + 9) × 5 = 13 × 5 = 65.

Чтобы умножить число на произведение, нужно сначала сделать умножение в скобках, а затем умножить на полученный результат.

Например: 2 × (5 × 3) = 2 × 15 = 30.

Чтобы умножить число на сумму, сначала необходимо выполнить сложение, а потом умножить число на результат, который получился.

Например: 6 × (2 + 4) = 6 × 6 = 36.

Если при умножении хотя бы один множитель будет равным нулю, то и само произведение также будет равно нулю.

Например, для любых чисел a, b, c будет верным такое равенство: 0 × a × b × c = 0.

Таким образом, при умножении любого числа на 0, мы будем брать это число 0 раз, т. е, мы не будем брать его не разу, а значит, в результате ничего и не получится.

В случае, когда мы умножаем ноль на любое число, мы будем находить сумму нулей, но она, как известно, равна 0.

При умножении любого целого числа на единицу в результате всегда получится то же самое число. Другими словами, при умножении на единицу умножаемое число никогда не изменяется.

Например: а × 1 = а.

Если в произведении двух чисел один из сомножителей будет единицей, то произведение будет равным второму сомножителю:

a × 1 = 1 × a = a.

Так как при умножении любого числа на единицу это число берется только один раз, то в результате можно получить только это же число.

А если мы умножаем единицу на любое число, например, 1 × 9, то мы будем находить сумму девяти единиц, другими словами, то количество единиц, из которых и состоит данное число.

Поэтому сумма этих единиц будет равна данному числу:

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9.

Умножение многозначного числа на однозначное

Чтобы умножить многозначное на однозначное число, необходимо умножить это однозначное число на количество единиц в разряде многозначного числа, после чего все полученные результаты сложить.

Например, нам следует умножить: 985 × 4.

Мы будем складывать число 985 четыре раза: 985 + 985 + 985 + 985.

Нам нужно каждое из слагаемых 985 представить в виде суммы его разрядных слагаемых: 900 + 85 + 5.

Само выражение будет выглядеть следующим образом:

900 + 80 + 5 + 900 + 80 + 5 + 900 + 80 + 5 + 900 + 80 +5.